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Abstract

A system with several components may undergo full system pass/fail testing as well

as quality assurance testing at the single component level. The component tests are

informative about system reliability, although they measure different things than the

full system tests. We present a Bayesian framework for integrating the two types

of test data for better reliability estimates. Our formulation allows the reliability to

depend on covariates such as age. One result of the inference is a better understanding

of the relationship between component tests and system performance. We illustrate

the ideas using a small subsystem of a larger (proprietary) system.

1 INTRODUCTION

The U.S. Armed Forces maintain multiple stockpiles of weapons, which need to be

monitored, managed and maintained over time. Typically, these weapon systems

degrade over time, and it is important to be able to estimate the fraction of units

within a given stockpile that will perform as expected at any given time. Current

strategies for obtaining an accurate estimate of the reliability rely on full system tests
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on a sample of units from the stockpile, and using the results of full-system tests to

obtain estimates. While this approach is commonly used and does provide the needed

estimates, it tends to be an expensive approach to answering this question.

Complex weapon systems are frequently comprised of well-defined subsystems,

which in turn are composed of many components. The reliability of such systems can

more effectively and efficiently be assessed by using all possible sources of data. In

addition to the full system tests, which are typically destructive and very expensive, it

may be possible to obtain measurements for subsystems or components to verify that

key elements are in appropriate working order. With a system model that details how

the various elements of the system are interrelated and affect the system performance,

this subsystem data can be utilized to increase precision of the estimated system

reliability.

As weapons are produced over a number of years, it is common for various com-

ponents to be upgraded or modified. This results in several variants of the weapon,

which need not have the same reliability characteristics. An alternate source of vari-

ants would be if several manufacturers produced one of the components of the system.

1.1 The Mini-missile system

Because of the proprietary nature of the full systems for which this methodology was

developed, we present our approach for a greatly simplified system. While the full

system has many more components and variants, the simplified system both retains

all the interesting analytical challenges of the full proprietary system and allows us

to present the new approach in a manageable form. We will refer to this system as

“Mini-missile:” it is a series system of two components, a launch motor (LM) and a

flight motor. The flight motor comes in two variants, FM1 and FM2. The system

being in series implies that for a flight to be successful, both the launch motor and
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the flight motor need to work appropriately. In this paper we will refer to the LM as

component 1, the FM1 as component 2, and the FM2 as component 3.

1.2 Data

Two types of testing are performed on the missiles: destructive full-system tests,

which involve firing of the round, and quality assurance testing, which involves sepa-

rate testing of the individual components of the system in a laboratory. We assume

that the missile needs to be disassembled in order to perform quality assurance tests.

As a result, we will view the quality assurance tests to be destructive as well.

During a test flight, these two components perform sequentially, so that normally

in the event of a failed system test, it is sometimes possible to diagnose which motor

failed, although we allow the possibility that some system failures cannot be resolved

further. Since the motors are connected in series, it will normally be impossible

to determine the status of the FM in the event of an LM failure. Variants of the

systems will be comprised either of components 1 and 2, or of 1 and 3. The result of

a full-system test therefore yields a success, failure or undetermined for each of the

components, as well as an overall success or failure for the entire system.

Alternatively, these components can undergo quality assurance testing to verify

that they meet engineering specifications. To this end, the missiles are disassembled

and the various components are tested. FM1’s are measured for ignition and total

impulse, FM2’s are measured for these two plus activation time, and launch motors are

measured for these three plus maximum thrust. In total, then, we have nine different

quantities measured for Mini-missile. Each of these measurements is recorded on a

continuous scale and has prescribed engineering specification limits: they are either

to be below, above, or between known operational limits. Both types of tests are

destructive, so that we never observe both a component’s specification measurements
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and the exact same component’s performance in a flight test.

Finally, for each component test and for each flight test, we have recorded the age

of the missile. Our analysis will enable us to identify which components degrade with

age and will assess the overall reliability of the full system as a function of age. This

will enable us to develop maintenance and retirement plans of items in the stockpile.

The framework discussed in this paper allows reliability to depend on other covari-

ates. In particular, the full missile analysis studied the effects of firing the missile in

cold conditions, taking the missile to and/or deploying it in the desert, and different

component manufacturers.

1.3 Related work

System reliability is a popular topic, with a number of methods for modeling the

system structure, including reliability block diagrams, event trees, fault trees, and

Bayesian networks. See Rausand and Hoyland (2004) for more details on any of these

approaches.

Many authors have considered assessing the reliability of full systems from both

component and system level pass–fail data. In this context, Martz, Waller and Fickas

(1988) and Martz and Waller (1990) considered estimating the reliability from bi-

nomial data, with the added twist of integrating expert opinion at different levels

(which is somewhat different from our problem of integrating two types of data).

Graves and Hamada (2004) provide a fully Bayesian analysis of the same data sets.

Other authors propose methods for evaluating or bounding moments of the system

reliability posterior distribution (Cole (1975), Mastran (1976), Dostal and Iannuzzelli

(1977), Mastran and Singpurwalla (1978), Barlow (1985), Natvig and Eide (1987),

and Soman and Misra (1993)). These moments can also be used in the beta approxi-

mations employed by Martz, Waller and Fickas (1988) and Martz and Waller (1990).

4



Soman and Misra (1993) proposed a distributional approximation based on a maxi-

mum entropy principle. Many reliability models do not consider prior expert opinion

and data at multiple system levels. Springer and Thompson (1966, 1969) and Tang,

Tang and Moskowitz (1994, 1997) provide exact or approximated system reliability

distributions obtained by propagating the component posteriors through the system

structure. Thompson and Chang (1975), Chang and Thompson (1976), Lampkin and

Winterbottom (1983), and Winterbottom (1984) use approximations for exponential

lifetimes rather than binomial data.

2 DATA AND THEIR STATISTICAL MODELS

This section introduces our statistical approach and discusses how we combine the

disparate pieces of information.

2.1 Statistical models

As with all statistical models for complex systems, specification of the connections

between components that form the entire system is an important issue. For our simple

model, we assume that both components, the LM and FM, need to work appropri-

ately for the entire system to work. With more complicated systems, block diagrams,

fault trees or Bayesian networks are sometimes used to describe the interrelationships

between the components of the system. Once this structure is defined, that represen-

tation allows for statistical models to be developed and be used to incorporate data

to make inferences through the likelihood function. Specifically, the statistical model

defines the probability of observing all possible data, with this probability depending

on some unknown parameters. For example, the probability of observing k successes

in n binomial trials with success probability p is f(x|p) = n!
k!(n−k)!p

k(1 − p)n−k for
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k = 0, 1, . . . , n. Here p is an unknown parameter. The likelihood function is this

same expression considered as a function of the unknown parameter p for a fixed

value of the data (k). If multiple independent data sets are analyzed together, their

likelihood functions are multiplied.

The unknown parameters are estimated from information contained in the data

alone, or in combination with expert knowledge and the observed data. Classical

methods focus on estimating the unknown parameters by maximizing the likelihood

function given the data observed. Bayesian methods require the encapsulation of the

expert knowledge, if any, into a prior distribution for the unknown parameters. Once

the data become available, the prior distribution is combined with the observed data

to become a posterior distribution for the unknown parameters. As the amount of

observed data increases, the results from Bayesian and classical approaches tend to

agree, as the value of expert opinion is dominated by evidence from the data. The

Bayesian approach may have substantial advantages when the amount of observed

data is small to moderate. In such cases, the knowledge summarized in the prior

distribution represents important additional information.

Some of the desirable features of the Bayesian approach is that it allows the

incorporation of expert knowledge with informative priors, if desired, as well as the

flexibility to model the uncertainty that may result from component interactions

which may affect how the reliability of a combination of components may behave

differently than just the simple product of their individual reliabilities. This enables

us to model more complex models where the connectivity of the components is not

deterministic. However, in order to be able to discern some of these patterns, we may

require a large amount of data at various levels of the system to completely model

and understand these interactions.

Our model for the Mini-missile must accommodate both flight data (pass/fail for

the entire system and possibly partial pass/fail information for some components
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using forensics) and continuous component specification data.

2.2 Component test data

We first transform the component test data. They are transformed so that for all of

the 9 specification measurements, larger values are always thought to imply higher

reliability, and that the stated boundary specification value is always transformed to

zero. For example, if the specification states that the measurement should be greater

than 10, transform the measurement by subtracting 10. If it should be less than 20,

transform by applying the function −(x−20). Finally, if it should be between 10 and

20, apply the function 5 − |x − 15|.

Denote the ith component test measurement by Si, for 1 ≤ i ≤ N1, where N1 is

the total number of specification measurements in the data set. Suppose that this ith

measurement corresponds to the Lith specification: for example, Li = 1 means that

the measurement is ignition time for a launch motor, while Li = 9 corresponds to the

total impulse measurement for an FM2 component. Denote the age of the component

in the ith measurement by Ai. We assume that these measurements follow normal

linear regression relationships: for 1 ≤ i ≤ N1, assume

Si ∼ N(αLi + βLiAi, γ
2
Li

), (1)

where α1, . . . ,α9, β1, . . . , β9, and γ1, . . . , γ9 are all unknown parameters to be esti-

mated using data. (The notation X ∼ N(µ,σ2) means that the random variable X

has a normal distribution with mean µ and variance σ2.) The α’s are mean values of

the specification measurements at age zero, the β’s measure how much these mean

values change with age, and the γ’s are standard deviations of the specification mea-

surements. In light of the transformations, βj < 0 implies age related degradation,

whereas βj > 0 implies an improvement. If the pattern of degradation is thought to
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follow a more complex relationship than changing linearly over time, additional terms

could be added to the equation above to add more flexiblity to the model.

If the distribution of the specification measurements are thought to be non-normal,

it is possible to replace the distribution of the Si could be replace with an alter-

nate distribution which also has parameters αLi and βLi to express the age related

degradation. The insertion of the new distribution would increase the computational

complexity of the analysis, but in theory would be possible to incorporate. Since

typically we have used this approach on data sets where there are not large numbers

of observations at any given age, it may be difficult to do formal testing of the normal

assumption of each specification. However, there may be other historical data or ex-

pert knowledge which will help justify or validate this assumption. If the assumption

of normality for the specification measurements is highly inconsistent with the data,

then the uncertainty bounds may not be appropriately calibrated.

These linear regressions could be done individually for each specification, and

that would provide valuable information about how components age relative to their

specifications. However, this only helps us predict whether components will be up

to specification. We want to predict the probability that a component of a given

age will work properly in a flight test, including estimating the relationship between

specification measurement and success in flight. To do this we need to integrate these

component test data with flight test data. In order to do this, we need to assume a

particular stochastic relationship between falling within the specification values and

that aspect of the component working appropriately in a flight test. We estimate the

parameters of this relationship based on data. This assumption is necessary since

because of the destructive nature of both types of testing, it is not possible for both

flight and specification data to be obtained on a single missile.
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2.3 Flight test data and the surrogacy assumption

To relate the specification data to flight test data, consider a component with M

related specifications SM . We write Z for the indicator that the component works in

a test. We assume that the probability that, at age A, the component would work

properly (Z = 1), given S1, . . . , SM , is

P{Z = 1|S1, . . . , SM , A} =
M∏

j=1

Φ

(
Sj − θj

σj

)

. (2)

Φ is the standard normal distribution function, Φ(x) =
∫ x
−∞(2π)−1/2 exp(−t2/2)dt; it

has a sigmoidal shape and increases from zero to one. The interpretation of a single Φ

term is that the reliability drops below 0.5 when the specification value drops below

θj, and σj parameterizes how steep the decline in reliability is with decreasing values

of the specification. We expect that θj and σj will be related to the published levels

that the specification should attain, but we will estimate their values from data in

case the published specifications are excessively conservative or lenient. Note that age

does not appear on the right side of this expression: this is because we are making

a “surrogacy assumption” that the only way that component success depends on age

is through the specification measurements.

For the flight test data, we do not get to observe the specification measurements,

so we want to be able to write the conditional probability P{Z = 1|A} of observ-

ing a given data pattern given the age A alone. Letting Ui be a synthetic normal

random variable with mean θi and variance σ2
i independent of Si, and assuming that

the specification measurements are independent with joint density function written

generically as p(s1, . . . , sM |A) =
∏M

i=1 p(si|A), we calculate

P{Z = 1|A} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
P{Z = 1|S1 = s1, . . . , SM = sM , A}p(s1, . . . , sM |A)ds1 . . . dsM

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

M∏

i=1

{

Φ

(
si − θi

σi

)

p(si|A)

}

ds1 . . . dsM
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=
M∏

i=1

∫ ∞

−∞
Φ

(
si − θi

σi

)

p(si|A)dsi

=
M∏

i=1

∫ ∞

−∞
P{Ui ≤ si}p(si|A)dsi

=
M∏

i=1

P{Ui ≤ Si|A}

=
M∏

i=1

P{Ui − Si ≤ 0|A}.

Now, the combination of assumption (2) and the normal linear models for the speci-

fication measurements causes a beneficial simplification, and this probability is

M∏

i=1

Φ



αi + βiA − θi√
γ2

i + σ2
i





since Ui − Si ∼ N(θi − αi − βiA, γ2 + σ2).

This argument works in exactly the same way if there are more covariates, and

it is also possible to work it out algebraically by completing the square. Note that

potentially this argument could be used with other distributional families for Si if

one were willing to assume that the Φ function could be replaced by the distribution

function of a random variable Ui such that Ui − Si has a tractable distribution. This

result is important because now we can use this expression in a likelihood function

for observed flight test data, it is tractable, and it does not contain the unobservable

S’s.

Although not applicable to the example system described in this paper, the tech-

nique can address components with no specification measurements. In this case, we

assume that a component of age A works with probability Φ(αi +βiA), since if a θ, γ,

or σ were to be added to the model, it would become nonidentifiable in the absence

of specification data.
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Finally, we describe how these probabilities are used in the likelihood function

for flight test data. Consider a missile i of variant 1, which has an LM (component

1) and an FM1 (component 2) but no FM2. This missile is of age Ai. Denote the

probability of successful operation of component j by pji, and recall that

p1i =
4∏

k=1

Φ



αk + βkAi − θk√
γ2

k + σ2
k



 , (3)

and

p2i =
6∏

k=5

Φ



αk + βkAi − θk√
γ2

k + σ2
k



 . (4)

For component 3, the product ranges from 7 to 9. If the ith flight test is a success,

the likelihood function contains a term of p1ip2i; if the test is a failure due to the flight

motor but the launch motor worked, the term is p1i(1− p2i); if the launch motor fails

and hence the flight motor is inconclusive, the term is 1− p1i, and if the test fails but

it is not known which component is responsible, the term is 1− p1ip2i. The flight test

data part of the likelihood function is the product of all these terms. For a missile

of variant 2, p3i is used in place of p2i. This flexibility to model how individual flight

results are summarized means that we can accomodate failures that can specifically

be traced to an individual component, or only to some collection of components. This

allows us to use flight data with a wide variety of scoring.

The concept of surrogate variables was introduced by Prentice (1989) and refined

by Pepe (1992) in the context of medical studies, where it is also called non-differential

measurement error by Carroll et al. (1995). Pepe and Fleming (1991) and Wang and

Pepe (2000) call the resulting data structure errors in variables with validation sample

and have considered estimation of θ when both the surrogate A and performance S

are discrete random variables taking on finitely many values. As we demonstrated,

extensions to continuous performance and surrogate variables is straightforward if a

parametric model for the conditional distribution of S given A is available. However,
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given the complexity of the relationship between the performance and the surrogate

variables, such distributions may be hard to specify. In this context, Turnbull and

Jiang (2004) and Jiang and Turnbull (2003) consider estimates of θ derived by a

generalization of the method of moments. While their estimators are consistent and

asymptotically Gaussian, it is unlikely that they are efficient. Finally, Hengartner

(2005) derives an efficient estimate for θ for continuous covariates and surrogates.

3 BAYESIAN ANALYSIS

Gelman et al (2003) provide a comprehensive introduction to Bayesian analysis. For

the sake of completeness, this section discusses the Bayesian approach to statistics,

which quantifies all uncertainties, including uncertainties about parameters, using

probability distributions. The Bayesian approach involves combining the likelihood

of the data with a prior distribution (see §3.1). The prior can either be a convenient

way to incorporate information extraneous to the data set, or, as in the present

case, can be chosen to have a small effect on the conclusions. Bayesian statistics

requires calculation or estimation of integrals (§3.2) rather than maximization, and

the YADAS software (§3.3) was instrumental in these estimations.

3.1 Prior distributions

To begin a Bayesian analysis, one specifies a probability distribution for the unknown

parameters: conceptually, this distribution quantifies the uncertainty about the un-

known parameters before collecting the data. Sometimes this distribution is taken

to be highly informative in the sense that some possible values are given much lower

weight than others and the distribution as a whole is weighted as heavily as a num-

ber of data points. It is also common to use noninformative priors, which are flat
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and/or less influential than data points. An example of a procedure for developing

an informative prior is as follows: consider a particular hypothetical specification

measurement (say the jth measurement) evaluated at age zero. αj is the average

specification measurement at that age. Suppose that the best guess for this mean is

5, but “it could be as low as 1.” Assuming that the normal distribution is an appro-

priate choice for αj and interpreting the value of 1 as the fifth percentile of the prior

distribution, one can use a N(5, 2.432) prior distribution for αj. Alternatively, using

a prior standard deviation larger than 2.43 should be less informative and should

have a smaller effect on the conclusions. In our analysis, we took the noninformative

approach, using normal priors with mean zero and relatively large variance for the

location and slope parameters (α’s, β’s, and θ’s), and using exponential priors with

mean one for the scale parameters (σ’s and γ’s).

3.2 Posterior distributions, and how to estimate them

The information in the raw data is captured by the likelihood which, when multiplied

by the prior, becomes proportional to the posterior distribution. While the prior

captures the uncertainty about the unknown parameters before we see the data, the

posterior distribution embodies the uncertainty after we see the data. Quantities

of interest are integrals (expected values) of functions of unknown parameters with

respect to the posterior distribution. In nontrivial analyses, these integrals cannot

be obtained exactly and must be estimated. Monte Carlo is one approach to solving

these complex integrals numerically that is relatively easy to implement. The idea is

to draw a sample from the posterior distribution with which the average of a function

is calculated. This approach is particularly appealing, because the Monte Carlo sam-

ple permits not only the estimation of the integral of any function, but also allows

estimation of quantiles and other quantities that are not obviously themselves inte-
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grals with respect to the posterior distribution. However, independent sampling from

the posterior distribution cannot be done exactly except in special cases. Bayesian

statisticians rely on a class of algorithms called Markov chain Monte Carlo (MCMC),

popularized by Gelfand and Smith (1990), where the Markov chain term refers to the

fact that the probability distribution of the next sample depends on the last sample.

Gibbs samplers are a popular subclass of MCMC algorithms. In a Gibbs sam-

pler, the unknown parameter vector is divided into components that are iteratively

updated by drawing new values of the component from its conditional distribution

given the current values of the other components. If it is not possible to sample from

these conditional distributions, a Gibbs sampler cannot be used. A more general

building block of MCMC samplers is the Metropolis-Hastings algorithm, which re-

lies on a “proposal distribution” to draw new values of the unknown parameter, and

an acceptance/rejection calculation that either moves to this new value or stays put

Algorithms called variously Metropolis-within-Gibbs or, more correctly, variable-at-a-

time Metropolis, divide up the parameter vector as in Gibbs sampling, and replace

the sample from a conditional distribution by a Metropolis–Hastings move.

3.3 The YADAS package

YADAS (Graves 2003a,b) is a highly extensible software system for creating MCMC

algorithms. It is written in Java and its source code is freely available at yadas.lanl.gov,

together with examples and documentation. The major strengths of YADAS are its

flexibility in expressing new statistical models, and its versatility in the MCMC al-

gorithms that can be applied to analyze the data. The first of these strengths was

particularly important in the Mini-missile problem, as the model that integrated com-

ponent test data with ambiguous system test data was new. The problem featured

unknown parameters with high posterior correlation, which typically causes poorly
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performing MCMC algorithms due to inefficiencies in moving the parameters one at

a time. YADAS facilitates the modification of poorly performing algorithms through

the addition of steps that simultaneously move correlated parameters.

4 RESULTS

In this section we present the results of the analysis. First, we discuss some alternative

models, one of which requires slightly richer data than are actually available, and

compare the estimated reliability functions for the system as a function of age. Next,

we dig down to the component level (even below that, to the component property

level) to investigate which properties of which components appear to age. Then,

we explore a side benefit of this style of modeling: the study of how the various

component test measurements appear to affect component reliability. All estimated

posterior distributions reported in this paper are based on 10,000 MCMC iterations,

preceded by a burn-in period of at least 200 iterations.

4.1 Comparison with alternative models

Here we discuss other models that could be used to analyze the data and how their

results differ from our approach. We display reliability estimates and uncertainty

estimates for the four analysis approaches, and for both variants, in Figure 1. The

reliability estimates are posterior means of the probability that the system works, and

the uncertainty intervals, shown using dashed-dotted lines, are 5th and 95th posterior

percentiles of this probability.

1. A natural approach is to fit a logistic regression to the system pass-fail data,

using age as the covariate, with the two variants treated separately. In other
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Figure 1: Posterior means and 5% and 95% probability bounds for reliability, for four

models and two variants (left: variant 1, right: variant 2). Blue: logistic regression

at system level; black: probit regression at component level, with ambiguous failures,

system tests only; red: same as black but with full data for the ambiguous failures

imputed; and green: the model described in Section 2, which integrates component

test data.
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words, the probability of system success for a system of variant j and age A is

exp(αj + βjA)

1 + exp(αj + βjA)
.

We fit Bayesian logistic regressions with fairly noninformative prior distributions

for the α’s and β’s. This model can potentially be adequate for these data: in

principle, it can fail to fit the data if different components age at different rates.

This is a much greater danger for complex systems than for Mini-missile, which

has just two components per variant. Also, it uses the data inefficiently: tests of

one variant should be relevant to estimating the reliability of the other variant,

and the component test data are not used at all. The simplicity of the model

can contribute to small estimated uncertainties, but these could be misleading

if there is lack of fit.

For variant 1, the posterior means (standard deviations) for α and β are 3.67

(0.41) and 0.072 (0.087). For variant 2, these quantities are 3.07 (0.20) and 0.026

(0.056). The positive means for the β’s suggest slightly improved reliability with

age, but since these means are small compared with their standard deviations,

the evidence of this improvement is quite weak. (Reliability that improves

with age is possible; it could reflect a superior production process in the past

that later deteriorated, but if this were the case it would very questionable to

conclude that reliability will continue to improve in the future. We stress that we

don’t have strong evidence that this is happening.) The estimates for reliability

as a function of age are in blue in Figure 1: there is a small improvement over

time, and uncertainty is much larger at ages far from the bulk of the data. The

oldest missile tested was age 25, and for each variant, the oldest missile that

failed was about fifteen years old. A substantial number of missiles of variant

1 older than fifteen years were tested, but few for variant 2. The median ages

of missiles that went through system test were 10.5 years for variant 1 and 4.5
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years for variant 2.

2. The next analysis would be natural if the data were available: this is an analysis

of a synthetic data set based on the actual data set, but where we have replaced

the system tests that failed but where we don’t know which components failed,

with more informative test results. These imputed data were created based on

estimated reliabilities from model (3) below. We then fit three probit regressions

for the age-dependent reliability of each component. More informative results

should imply an improvement in uncertainty, but only eight tests were changed,

so this improvement should be small. We are still ignoring the component test

data. The model assumes that the success probability for component j at age

Ai is Φ(αj +βjAi). Posterior means (standard deviations) for α1 and β1 are 2.14

(0.10) and 0.014 (0.024), for component 2 they are 1.96 (0.20) and 0.10 (0.06),

and for component 3 1.99 (0.11) and 0.004 (0.03). Still, reliabilities are not

decreasing with age, and component 2 seems to be most likely to be improving,

although this is still very tentative. Reliability and uncertainty curves for this

methodology are in red in Figure 1.

3. Very similar to approach (2), but suitable for the data we have, is the model for

the system test data discussed in Section 2, omitting the component test data.

Because we don’t analyze the component data here, the parameters in the probit

regression for component success probability can be reduced: the probability

of correct functioning of component j in test i, where the age is Ai, is again

pji = Φ(αj+βjAi), but we depart from approach 2 by using the correct likelihood

for the observed result of the test (for example, the probability of observing that

at least one of components 1 and 2 failed in test i is 1−p1ip2i). Here the posterior

means (standard deviations) are 2.12 (0.10) and 0.023 (0.025) for α1 and β1,

2.00 (0.22) and 0.084 (0.064) for α2 and β2, and 2.01 (0.12) and -0.002 (0.033)
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for α3 and β3. Note that all the standard deviations have increased a small

amount relative to analysis (2), as would be expected. Reliability estimates

for this model are shown in black in Figure 1. Since there is little evidence

that any component is aging at all, let alone that the components are aging at

different rates, it is not surprising that model (1) would fit the Mini-missile data

adequately. Such is not the case for the full system, however.

4. The fourth model is the one described in Section 2, and it is shown in green in

Figure 1. This model incorporates the component tests, so it has the potential

to increase the precision of the inference. One cost of this is the introduction

of several more parameters: this model has 45 (an α, β, θ, γ, and σ for each of

the nine component test types) while approach (3) had just six. This increased

complexity should ensure that the data are fit adequately, but if this is more

complexity than is needed, the estimates will introduce more uncertain than

necessary. For example, if we model the system at a level of detail that does

not match the data that we observe (say we have a number of components which

are not individually observed to fail during flight tests, but are only observed

as one of a subset of components), then we may be artificially introducing

additional uncertainty into our estimation. Similarly, if we include specification

data which are not important to the functionality of the component, then we

may again be modeling spurious information that will not improve estimation.

As with many statistical models, the number of parameters should be considered

relative to the total data available to estimate them, and a suitable granularity

of decomposition of the model should be chosen to reflect the amount of data

available to estimate all of the model parameters.

Figure 1 shows that the probability bounds for reliability as a function of age

are in general tighter for this model, especially for variant 2. In particular, the
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use of the component test data has greatly eased our concerns about aging of

Variant 2, as can be seen by the much higher lower probability bounds for the

green model. The second type of flight motor (in variant 2) has considerably

more component tests than the first type, about four times as many component

tests per specification, so it in unsurprising that these data were much more

powerful for variant 2.

Overall, the four different models shown in Figure 1 illustrate the types of analyses

which we consider in this paper. From logistic regression which only considers the

flight data in pass/fail form, to analyses which include a decomposition of flight

failures into attributable component or groups of component failures, to a model

which includes full flight data and the component specification data. The posterior

means of the various models differ considerably, since differ information has been

used. In particular for variant 2, the addition of the component specification data

is very helpful to improve our reliability estimate for older systems, by monitoring

the trend in aging of component specifications inside their specification limits. The

different approaches also have different associated precisions as the type and amount

of data and the number of parameters in the model affect the width of the probability

bounds.

4.2 Aging

Our analysis permits precise study of the aging behavior of the system. Not only are

some components allowed to age while others do not, we are even capable of identifying

which aspect of a component appears to age. Since we have one set of unknown

parameters for each type of component test, the parameter function β/
√

γ2 + σ2 for

a given specification measurement measures the effect of one additional year of age on

the inverse probit of the reliability. Figure 2 plots means, 5th, and 95th percentiles of
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the posterior distribution of Φ(Φ−1(p+β/
√

γ2 + σ2)−p as a function of p; this shows

the change in reliability that is predicted with one more year of age as a function of

the current reliability. This assessment can help us understand how the component

reliabilities are expected to change as well as how certain we are of the projected

changes. For most of the components there is a reasonable amount of uncertainty in

the estimates of trends, which is a function of the limited data available.

If the probability bounds include values both above and below zero, then it is

reasonable that the part could either improve or degrade over time. The seventh

plot, ignition time for flight motor 2, is the only one with the lower probability

bounds above zero, suggesting improvement with age, although it is possible that

this improvement is so small as to be negligible. Most plots are open to both the

possibilities of improvement or worsening with age. The full system analysis identified

strong evidence that some components worsen to some degree with age.

4.3 Relationship between specifications and component suc-

cess

One assumption in our model is that if specification measurement j would have been

measured to be s, the probability that it would have caused a failure in a system test

is

Φ({s − θj}/σj).

We obtain a joint posterior distribution for θj and σj, so we can estimate the rela-

tionship between each specification measurement and system test failure using this

expression. It should be noted that no data directly report on this relationship: θj

and σj can only be estimated using the system test data, for which s is not observed.

There are other parameters αj, βj, γj in the probability of success, and estimates of

these can be obtained from component test data. As a result of the indirectness of our
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Figure 2: Illustration of estimated aging effects for the specification measurements.

For each possible current reliability, we show posterior means and intervals for the

change in reliability between now and next year.
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information about this relationship, it should be unsurprising that our uncertainties

about these curves can be quite large, especially for values of s where data are sparse.

Estimates of this relationship are shown in Figure 3. The solid curve in the jth plot

is the posterior mean of Φ({s − θj}/σj) as a function of s, and the dotted curves are

the 5th and 95th percentiles of this quantity. The small solid curve in the corner is a

density estimate of the specification data distribution, normalized to have a maximum

value of 0.4. 7. The probability bands in Figure 3 are very wide when we are away

from the observed data, as we would expect since there is no direct information to

help us with estimation there. However, when we are close to the observed data, the

probability bands are typically quite narrow.

The vertical lines are at the point(s) of the published specification value: blue

lines are used for the specification value under cold conditions when it differs from

the normal condition specification. The plots suggest that the specifications for tests

5 and 9 may be too conservative. It is possible that the specifications for other tests

are too lenient, but in no case is the information anything close to conclusive (in all

cases the upper probability bound for reliability at the specification value is essentially

1).

In our approach, we assume that we know the connection between the direction

of changes in the specification value over time and the probability of the component

failing. for example, we assume that engineering knowledge tells us that increases in

the ignition time will increase the probability that the part will fail. If the connection

between the specification value and the components probability of failure cannot be

clearly identified, the specification measurement should not be included in the model

and likely should not even be collected.
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Figure 3: Estimated reliability curves as a function of specification measurement.

The solid curves are posterior means, and the dotted curves are 5% and 95% proba-

bility intervals. A density estimate for the observed specification data is also shown,

normalized so that its maximum value is 0.4. The red vertical line is the published

specification value under normal conditions, and, if present the blue vertical line is

the specification under cold conditions.
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5 CONCLUSIONS

For many complex systems, adequate numbers of full system testing throughout the

aging of the system is either not possible or prohibitively expensive, it is helpful to

find approaches that allow us to use multiple sources of data from a variety of com-

ponents that comprise the system. In this paper, we have described an analysis that

makes use of both system test data and component acceptance testing data to obtain

more precise reliability estimates. This allows system reliability to be estimated us-

ing several sources of data with increased precision when full system tests are scarce.

The approach allows for flexibility with how completely full system testing failures

are understood, while allowing detailed failure identification to be incorporated where

available. Because we are combining component specification data with the full sys-

tem testing, we are able to gain a better understanding of the connection between

these two measurement of the components, and calibrate how accurately our speci-

fication limits have been set. We can also monitor the effects of aging on reliability

at the component level to gain an understanding of which components are most in-

fluential in affecting system reliability and need to be monitored more closely as the

system ages.

The method may be considered for a variety of complex systems that require all

components to work for the system to operate successfully. By altering the model

it would be possible to model systems with redundancy, however this is beyond the

scope of this paper. Because of the additional number of parameters introduced into

the model with each additional component specification measure, some care should

be taken to only include those component specification measures which are thought

to be important to component and overall system reliability. In addition, adequate

data both for the component specifications and for the full system tests is needed to

estimate the model parameters.
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